Search results for "Glial tumor"

showing 2 items of 2 documents

Quantitative Imaging of D-2-Hydroxyglutarate in Selected Histological Tissue Areas by a Novel Bioluminescence Technique

2016

Abstract Patients with malignant gliomas have a poor prognosis with average survival of less than one year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG), a metabolite, which was discovered first in this tumor entity. D2HG is generated in large amounts due to various “gain-of–function” mutations in the isocitrate dehydrogenases IDH-1 and IDH-2. Meanwhile, D2HG has been detected in se…

0301 basic medicineCancer ResearchPathologymedicine.medical_specialtyMetabolite610 MedizinBiology03 medical and health scienceschemistry.chemical_compoundmedicineBioluminescence imagingBioluminescenceOligodendroglial TumorOriginal Researchddc:610D-2 hydroxyglutarateglioblastomaMyeloid leukemiaCancerACUTE MYELOID-LEUKEMIA; ISOCITRATE DEHYDROGENASE 1; IDH2 MUTATIONS; CHROMATOGRAPHY/MASS SPECTROMETRY; MAGNETIC-RESONANCE; 2-HYDROXYGLUTARATE; CANCER; GLIOMAS; L-2-HYDROXYGLUTARATE; METABOLITES; D-2 hydroxyglutarate; IDH mutations; bioluminescence imaging; oncometabolite; glioblastomabioluminescence imagingIDH mutationsmedicine.diseaseoncometaboliteLymphoma030104 developmental biologychemistryOncologyChondrosarcoma
researchProduct

Quantifying brain tumor tissue abundance in HR-MAS spectra using non-negative blind source separation techniques

2012

Given high-resolution magic angle spinning (HR-MAS) spectra from several glial tumor subjects, our goal is to differentiate between tumor tissue types by separating the different sources that contribute to the profile of each spectrum. Blind source separation techniques are applied for obtaining characteristic profiles for necrosis, highly cellular tumor and border tumor tissue and providing the contribution (abundance) of each of these tumor tissue types to the profile of each spectrum. The problem is formulated as a non-negative source separation problem. Non-negative matrix factorization, convex analysis of non-negative sources and non-negative independent component analysis methods are …

Convex analysisApplied MathematicsAnalytical chemistryGlial tumorIndependent component analysisBlind signal separation030218 nuclear medicine & medical imagingAnalytical ChemistryMatrix decomposition03 medical and health sciences0302 clinical medicineDimension (vector space)Magic angle spinningSource separationBiological system030217 neurology & neurosurgeryMathematicsJournal of Chemometrics
researchProduct